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INTRODUCTION

A pervasive problem in applied mathematics is the
algebraic eigenvalue problem. Existing programs for the solu-
tion of eigenvalue problems are inadequate to meet the needs of
increasingly sophisticated technical analysis. This memorandum
contains a detailed analysis of the eigenvalues and eigenvectors
of general real matrices.

A number of convenient properties possessed by the
symmetric matrix are no longer available for the general matrix.
The two most serious difficulties are the possible nondiagonaliz-
ability and the fact that eigenvectors of distinct eigenvalues
are not necessarily orthogonal. As a consequence of the latter,
we do not have a basis of orthonormal eigenvectors. There are
several methods available for solving the symmetric eigenvalue
problem. The "Q-R" method, is efficient for finding the eigen-
values of nonsymmetric matrices as well. But there does not
appear to be any program available for extracting the eigenvectors
of repeated eigenvalues in the nonsymmetric case. Moreover, if
the matrix is nondiagonalizable then there are less eigenvectors
than eigenvalues; thus at least one of the repeated eigenvalues
will have a higher multiplicity than the dimension of the corres-
ponding eigenspace. These are some of the difficulties the herein
contained algorithms are designed to handle.

A computer program based on these algorithms has been
written and tested on several matrices collectively known to
possess the above mentioned difficulties. Results of some of
these test examples are presented in Section 5. A companion
memorandum documenting the computer program will be forthcoming.
The program is written to produce a complete set of eigenvectors,
although it can be easily modified to find the eigenvectors of
selected eigenvalues. For example, in structural analysis, the
eigenvectors of a few eigenvalues at one (usually lower) end of
the spectrum are much more valuable than the rest. Again, for
large systems it may be impractical and/or unnecessary to insist
on computing all the eigenvectors.
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0. Preliminaries

In general a matrix is indicated by an upper case
letter and a vector by a lower case letter.
A is the given n x n matrix with elements a;. An

n-dimensional vector v with components {vl, Vor seey vn} has

norm
n
2
vl \/(Z v, 1] 1)
i=1

where |x| is the absolute value of the real or complex number X.
If ||v|] = 1, v is called a unit vector. Since several vectors
will be made, it must be understood that a quantity like Vi may

refer to the ith component of the wvector V... For convenience of
writing, a vector may be represented by its transpose thus:

vT = {Vl, ooy vn}. A column of a matrix will sometimes be considered
as a vector. x* denotes the complex conjugate of the number x. MT

is the transposed matrix of a (possibly rectangular) matrix M.

Thus vT is a row vector. The notation ( , ) will be used for the
inner product of vectors:

n
(ua,v) = Z u,v,* (2)

i'i
i=1
. , T 2
Thus, in particular, (u,u) = uu = ||u|]|”.
Remark

The so-called 2-norm is chosen here. Associated with a
vector norm matrix norms are defined by

lax|| < [Ial] [l=[] . (3)

Any matrix or vector norm for which (3) holds is said to be
compatible or consistent. Two popular matrix norms compatible

with the 2-norm (1) are
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||A||2 = (max eigval of AHA)l/2 (4a)
and

1/2
2
1allg = [TT 1ag50%) (40)
1]

In (4) A" is the complex conjugate transpose of A. ||A||2 is

called the spectral norm and ||A||E the Euclidean norm. Even

though the Euclidean norm is weaker than the spectral norm,
because it is readily computable, it is useful in error analysis.

Definition

An n x n matrix H is in upper Hessenberg form if and
only if

hij = 0 for all i > j+1 (i, j=1,2,..., n)

The reader is reminded that a nondiagonalizable matrix
is also called a defective matrix because its eigenspace is of a
lower dimension than that of the matrix. Equivalently it is said
to possess nonlinear divisors. A simple example of a nondiagonaliz-
able matrix is the following:

1 1 0
c=]0 1 0
0 0 1

The eigenvalues of the 3 x 3 matrix are 1, 1 and 1. {1, 0, 0}

and {0, 0, 1} are the eigenvectors. Also there are no other inde-
pendent eigenvectors. Thus the eigenspace does not span the three
dimensional vector space on which the matrix C operates as a linear
operator (linear transformation).

When a matrix is brought into Jordan-canonical form, not
only are the eigenvalues known but a complete description is avail-
able as to the multiplicity of each eigenvalue, the number of eigen-
vectors for each eigenvalue and so on. The above matrix was
deliberately chosen to be already in Jordan-canonical form from
which the following can be stated. C has eigenvalue 1 of multipli-
city three. There is one 2 X 2 so-called Jordan matrix (the leading
principal submatrix here) and therefore there is exactly one eigen-
vector for two of these eigenvalues. The third eigenvalue corres-
ponding to the 1 x 1 Jordan matrix will have its own independent
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eigenvector (namely, {0, 0, 1}). The elementary divisors are
the characteristic polynomials corresponding to each of the
Jordan submatrices. For C, they are

(x-1)% ,  (x-1) .

Thus C has a nonlinear elementary divisor. Therefore it is
defective and nondiagonalizable,

Unfortunately, it is not feasible in general to obtain
the Jordan-canonical form. Consequently, aposteriori decisions
are made as to defectiveness, etc., in the sense that these
decisions are delayed till after the eigenvalues and eigenvectors
are found. These questions are discussed in section 3. Some of
the features of the Jordan-canonical form are exhibited in the
following example.

E o o 0]
e~ |1 -1 1 1 (5)
-1 o0
_ 1 -2

While obtaining the Jordan form is a major undertaking, the
det (E-)I) can be written as

p () (=1-2){ (-1-A) [ (-1-x) (-2-2) 1}

(+1) 3 (a+2)

Therefore, the eigenvalues are -1, -1, -1, -2. The characteristic
polynomial is

p(x) = (x+1)° (x+2)

By definition the minimum polynomial m(x) for matrix E is the
monic polynomial with lowest degree such that

m(E) = 0 .
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The Cayley-Hamilton theorem states that

p(E) =0
I.e.,
(E+1) > (E+2I) = 0
Hence m(x) divides p(x). For E it can be verified that m(x) = p(x).

This implies that there is only one eigenvector for the repeated
eigenvalue -1. Thus E is a defective matrix and has the Jordan-
canonical form

As exemplified above, one can extract from the minimum
polynomial much information including whether or not defects are
present. But in general it is not feasible to find this polynomial
numerically. Section 5 includes numerical results for E.

The herein discussed program consists of the following
subprograms:

1. The given matrix A is condensed by Householder similarity
transformations to an upper Hessenberg form H.

2. The eigenvalues of H are computed by the 'Q-R' method.

3. The eigenvectors of H are computed using inverse iteration
and for every eigenvalue an orthonormal set as basis for
its eigenspace is derived by the Gram-Schmidt process.

4. The eigenvectors of A are now obtained from those of H.
Again the eigenspace of each eigenvalue is spanned by an
orthonormal set of eigenvectors of A. The eigenvalues of
A are, of course, the same as those of H.

There are two reasons why the problem is restricted to
real matrices. One is that it appears the current need is only
for real matrices. The other reason is that the extra demand for
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storage caused by including complex matrices would necessarily
reduce the maximum dimension of the matrix that could be handled
in-core.

It is emphasized that A is only assumed to be real and
that there is

a. no restriction on symmetry
b. no restriction on repeated eigenvalues
C. no restriction on diagonalizability.

The various subprograms are now described. The details
are given only as far as necessary to understand and appreciate
the underlying principles employed in the program. The methods
of sections 2 and 3 do not require a Hessenberg form but if these
are applied to a full matrix, the amount of computation would soon
be prohibitively large.

1. Matrix to Condensed Form

In a recent paper [1l] Businger has exhibited an example
to prove that the reduction of a general matrix to Hessenberg form
by elementary similarity transformation using the popular Gaussian
elimination may be unstable. Therefore, Householder reduction is
employed to transform A to a similar upper Hessenberg form H.

This method is known to be unconditionally stable. (Householder's

unitary matrices have been used to tridiagonalize symmetric matrices

in the subroutine TRDMX available in Bellcomm's computer library.)

The similarity transformation from A to H is accomplished by the

use of (n-2) elementary unitary matrices P_; r=1, 2, ..., n-2. The
) r

Pr have the simple form

P =1 - 2w.w T (6)
r rr

where I is the n x n identity matrix and W is a real unit vector

with the first r components zero. Writing

A0=A

= P A

R r—lPr (r=1,2,...,n=2) (7)
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it turns out that with proper choice of the W.r A is in fact

an upper Hessenberg matrix. That is to say, H = An—2‘ Consequently,
the method of choosing the v, is explained.
Method

The first step is to choose Wy such that all the last

(n-2) elements of the first column of Al (in (7)) are zero.

Since Wy and Pl have the formsl

T

wy o= {o, Xor eeey xn} , (8)
rl 0 .o 0 ]
0 1-2x 2 -2X.X -2X.X
2 X2¥3 2%n
0 -2x X 1-2x 2
- xn 2 N - ’

it is clear that post multiplication by Pl leaves the first
column of any matrix unaltered. Hence PlAOP1 will have the last
(n-2) elements of column one vanish if and only if (Ple) also
has the last (n-2) elements of the first column vanish. Now

T
PlA0 (I-2wlwl JA
T
= A - 2wlwl A
. T . . T
and if wl A is written as t , then
T
1

The notation and approach given in [2] for symmetric matrices
is used. -
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The elements in the first column of PlAO are

{all’ a,; - 2x2tl, a31 - 2x3 17 ceer @5 2xntl} (10)

where the first component t1 of the vector t is given by

tl = Xpa,; *+ X383, t...4 Xa, - (11)
Therefore,

ail - zxitl = 0 I i=3'4’c-.,n (12)

and also the second component ayy - 2x2tl in (10) must be such that

n
2 2
(a21 - 2x2tl) = z: a;, (13)
i=2

To justify (13) it is noted that (since wTw = (w,w) = 1)

pPT = (I - 2wwD) (I - 2ww?)
= I - duw® + 4w(wTw)wT
=1
Hence PT = P-l (i.e., P is orthogonal). Consequently, for any

vector u,

(u, PTPu)

(Pu, Pu)
= (u, u)

which implies that ||u|| is invariant under P. Letting u be the
first column of A, (13) follows from (12) and (10).
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Now let the right side of (13) be s and rewrite the

equation in the form

X. - 2x.°t /s ox

a1 %2 2 9 2

Rewrite (12) in the form

a 2
1171

From (11), (14) and (15) it follows that

n
- 2 _+
t, - 2ty 2: x;© =1 x, Vs
{29
But (8) implies

n

E: x.2 =1 .
i

i=2

Hence

2 _1|; 2
X2 %2 S1/2

X, - 2Xi tl= 0’ i=3,4'o.

(14)

(15)

(16)

(17)

(18)

Thus Wy and, therefore, P, are completely determined when

/s and then the X are computed from (18). The ambiguity of sign in
(18) is removed by assigning the appropriate sign which will avoid
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cancellation. Thus they are given the same sign as a,,. It is
21
also noted that

(I-2ww ) A (I-2ww’)

o
i
e
e
o
I

A - 2Awa - 2waA + 4waAwa

h

A - 2w[wTA - (wTAw)wT]

i

- 2[Aw - w(wTAw)]wT.

wTAw is a scalar which is denoted by k. Then

A = A - 2w qT - 2q'wT (19)

where
q. = [wA - kw'] (20)
q' = [Aw - kw] . (21)

Thus in practice Pl is not computed explicitly. Once the vector w

is obtained the scalar k and the vectors q and gq' are calculated.
(19) will then furnish Al' This results in great saving in storage

since one can work with one matrix and some vectors rather than two
matrices. Also there is considerable reduction in computation time
since matrix multiplications are replaced by matrix-vector or
vector-vector multiplications.

This ccmplCtCS +tha Adigmmecinn An nhi—aining a matrix A,
similar to A but with all its last (n-2) elements in the first ™
column equal to zero. Now it is clear that one can repeat the
process in going from A, to A,. That is to say, find the Wo such

that the second column of A2 would be nonzero only in the leading

three places. What has to be guaranteed, however, is that this
new transformation leaves the zeros of column one intact. This
is shown below.
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By definition W, is of the form

T
Wyl o= {o, o, X3 Xgp eeey xn}

and P, has the form

2
~ -
1 0 0 0 coes 0
0 1 0 0 csee 0
2
2
0 0 --2x4x3 .
: 2
0 0 1-2x .
L n |
Clearly then, any matrix post-multiplied by P2 will have its
first two columns unchanged. Thus one need consider only the
first column of PZAl' Since Ay has the form
o -
a;q ay, ceeen an
axy a,, cecen asn
Ay = 0

it is evident that the first column of P2Al is identical with the
first column of Al.

In general the transformation from Ar to Ar+1 is such
that the first r columns of Ar and Ar+l
efficiency the computer program has taken advantage of this fact.

are identical. For
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To summarize: There are (n-2) major steps in reducing
the given matrix A to a Hessenberg matrix H. At each step a
scalar S, and a vector w. are computed. This involves computing

two square roots, once for Vs and again for obtaining the first
nonzero component of w from an equation of the form (18). Once
W is obtained it is a simple matter to compute the scalar kr

and the vectors q.r q; and finally a new matrix Ar' At each
successive step the number of operations is reduced and as a rough
estimate about % n3 multiplications, 1 n2 divisions and 2n square

2
roots are needed.

To fix the ideas the computation2 will be carried out
completely for the following 4 x 4 matrix.

Consider again the matrix E of (5)

q
.1 0 o o
a,-z= | 1 1
1 -
L1 ~2

The aim is to show that the algorithm produces a similar Hessenberg
form. With the notation of the text;

2 2 2 =
s, = de21 +az " +a,t = V3 = 1.732

wlT = {0, Xy s x3, x4} where
2 _1,1 lay, | . - aysign a,; . - a,,sign a,,
¥ =373 si ' 73 2X,Sq "4 2X,8,

2The computation is rounded to three decimals.
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Hence
x2 = .888
x3 = ,325
x4 = ,325

w'A = {1.538, —-.888, .888, .238!}

(Aw)T = {0, -.238, -.325, -.325}

k = wTAw = -.423
,T T
o = [Aw - kw] = {0, .137, -.188, -.188}
g = [w'A - kw'] = {1.538, -.513, 1.025, .375}
Al = A - 2wlqT - 2q'wlT, becomes
[ -1 0 0 o
-1.732 -.333  -.911 .244
A, =
0 .667  -1.544 -.122
|0 .667 .455  -2.122

The elements of Al are correct to three decimal places. The

second and final step is to reduce the (4,2) element to zero.

14

_ 2 2 _ 2 i 5 _
s, = WVEBZ +a,," = “Vﬂ667 + .667° = .667/2 = .943

{.871, 1.000, -1.253, -.925}

>
i

(aw)T = {0, -.748, -1.474, -.391}
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k = -1.511

, T
q'" = {0, -.748, -7.746, .187}

T

q = {.871, 1.000, .143, -.346}

A2 now becomes

! 0 0 o ]

1.732 -.333  .471 .816
Ay = 0 -.942  -1.667 .577

Lo 0 0 ~2.000]

Thus A2 is in Hessenberg form. The (4,3) element of
A2 in this example happens to be zero to our working accuracy.
This is, of course, not true in general.

2. Eigenvalues of H

To obtain eigenvalues of H the so-called Q-R method
is used. For Hessenberg matrices this is particularly efficient.
This is an iterative method usually with rapid convergence. The
method shall not be described here for three reasons. One is
that it would take considerable space to present the details.
Second reason is that in the program a Q-R routine developed
elsewhere is used. Finally, there is an excellent exposition
of the Q-R method in a recent paper by Martin, Peters and
Wilkinson [3].

The idea is to transform H to an almost upper triangular
form by orthogonal similarity transformations. Then the eigen-
values are simply the diagonal terms of the latter or the eigen-
values of certain 2 x 2 matrices. The basic algorithm is defined
by

s =1,2,... (22)
where Q is orthogonal and R is upper triangular. Hl is the initial

Hessenberg matrix. It turns out that all HS are then Hessenberg
and it can be shown that Qg -+ D, a diagonal matrix, as s+, so that
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HS itself approaches an almost upper triangular matrix, provided

the eigenvalues of H are suitably restricted (i.e., H is scaled).

The original Q-R method as developed independently by
Francis and Kublanovskaya in 1961 has since been modified and
improved by several authors and in the current form is quite
sophisticated [3]. One merely observes that transformations of
the type (6) are commonly used in this process as well. To speed
up convergence, (22) are modified by so-called origin shifts. To
avoid complex arithmetic when working with real matrices, two
steps of the Q-R algorithm are performed simultaneously. As
the subdiagonal elements of successive Hs rapidly approach zero,

various criteria have been devised to split the matrix into two
or more submatrices and the process continued with each submatrix
separately until finally all the eigenvalues are isolated on the
diagonal or are the eigenvalues of 2 x 2 matrices.

3. Eigenvectors of H

It is now assumed that reasonably accurate eigenvalues
have been obtained for H. The next thing to do is to compute the
eigenvectors of H. Obviously there are at least as many methods
of doing this as there are for solving a system of linear equations.
But none can guarantee a complete set of independent vectors when
there are repeated roots. Most methods would in fact give only one
eigenvector for each distinct eigenvalue. A method is described
here that determines the complete eigenspace for each distinct
eigenvalue. Moreover, the eigenvectors are orthonormal. This
method can also be used to compute eigenvectors for selected
eigenvalues. The program has been tested on some examples with
repeated eigenvalues and the results were satisfactory (see
section 5). The tests included matrices with nonlinear elementary
divisors.

A discussion of the question of determining the multiplicity
of an eigenvalue follows. When the matrix has relatively poorly
separated eigenvalues, this determination can be difficult. It is
important to know the multiplicity of an eigenvalue; if A + Xy

then there is at least one eigenvector for each of these eigenvalues,
whereas if Al = Ay then there may exist only one eigenvector.

Mistaking equal eigenvalues to be distinct is a bigger hazard than
taking close eigenvalues as equal, because in the former, one may
be finding an eigenvector which does not exist! Such difficulties
have led to the belief that some sort of ordering of the complex
numbers is needed. Attention is now directed to a description of
how these difficulties can be resolved.
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Let €17 €5 and €5 be small positive numbers. The

actual values assigned to these numbers are pretty much left to
the user. Let the eigenvalues be Aj = u., + ivj, j=1l,...,n.

First test for pure real and pure imaginary numbers.

a. If |Ajl S eqr set . 0.

b. If Ivj|/|ujl S e, or if Ivjl Ze, set vj=0.

c. If lvj{/luj| > e, and if Iuj|/|vj] h €, OF if lujl 2 €,
set uj=0.

The following four steps are used to test for multiplicity.
1) First reorder all eigenvalues in ascending order of real
parts. 1ii) Then divide eigenvalues into classes as follows.
Two neighboring eigenvalues Aj and Aj+l would be in the same class
if and only if pj+l - j =
would be in the same class if and only if Ao lies in the same class

o-1 for all j < & X k. Thus the number of classes could be

u: < €5. Any two eigenvalues Aj and A (3<k)

as i

anything between 1 and n depending on e, and the distribution of

3
the spectrum. iii) For each class arrange the members according
to increasing order of imaginary parts. iv) Finally, divide
eigenvalues in each class into subclasses (cells) where two eigen-
values lj and Aj+l would be in the same subclass if and only if

v As in (ii) above, is in the same class as

V. - v. § g,.
j+1 j 3
Xj+l if and only if v

Ay+2
542 - vj+l < €3 and so on.

Thus the n eigenvalues have been grouped into, say, m
nonempty sets so that the computed eigenvalues corresponding to
each repeated root must fall in the same set for appropriate €q-

For most problems, a judicious choice of €3 should give a

grouping such that each set has precisely the repeated roots. The
m would be exactly the number of distinct eigenvalues and there
must be at least m independent eigenvectors.

Grouping the eigenvalues in the above fashion one can,
by taking €3 sufficiently large, make sure that all the computed

eigenvalues corresponding to a multiple root fall in the same cell.
If a multiple root is also close to one or more other roots, then
our cell may conceivably include one or more of these other roots
as well. But now one can at least intensify tests within each

cell to separate the distinct eigenvalues. The reader, however,
should be warned of the significance of situations where an eigen-
value is pathologically close to a repeated eigenvalue. For
example, consider the matrix
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[_1 0 0 0]
1 -1 1 1
1 0 -1 0

| 1 0 1 aJ

The eigenvalues are -1, -1, -1 and a. The repeated eigenvalue
has unique eigenvector {0, 1, 0, 0} and the eigenvalue a has
the eigenvector {0, 1, 0, l+a} when a # -1. Thus if a+l = ¢
and € is down to the noise level, one cannot say, in practice,
whether the matrix has -1 as a root of multiplicity four and a
uniqgue eigenvector or has two distinct but very close roots and
therefore two distinct eigenvectors. It appears that a patho-
logically close eigenvalue mistakenly identified as a repeated
root does no harm even though this in general means dropping a
genuinely existing eigenvector from the list or orthonormalizing
an eigenvector which should not be orthogonalized.

The proposals exemplified in the last few paragraphs,
specifically designed to handle multiplicities and defects, have
not yet been incorporated into the computer program. An obvious
difficulty is to come up with satisfactory criteria for the para-
meters e;- As the program stands now, multiplicities and defects

are discerned aposteriori, in the following sense. Two computed
values are treated as if they are distinct unless they turn out

to be identical to machine accuracy. Thus in practice there

seldom are repeated roots and consequently one will end up with

as many eigenvectors as the dimension of the matrix. But examining
the computed eigenvalues and eigenvectors one is usually able to
determine multiplicities as well as defects if any (see section 5).

A proof for convergence of the inverse iteration method
follows. The proof has been indicated for symmetric matrices in
Wilkinson [4] and convergence has been tacitly assumed for general
matrices, but a proof for general nonsymmetric matrices which may
be defective appears to be unavailable.

First assume that H (or A, equivalently) is not defective.
Let Al’ Az, ey An be the eigenvalues and Uyr Uy eeey U be the

corresponding set of eigenvectors. Then an arbitrary vector x6 has
a representation

Xy = Z b;uy (23)

i=1
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for scalars bi' If A is not one of the eigenvalues Ao then

(H - D)y, = X0 (24)

has the unique solution

n
- _ -1
yp= ) ®-iD7'bu . (25)
i=1

For a specific io, the corresponding vector in the sum (25) has
the representation (for some scalars ek)

-1 =~ (ig)
(H - AI) biouio = Z e\ u, (26)
k=1
so that
=~ (iy)
blouio = (H - AI) 2: ek uk
k=1
n (i.) n (i.)
= (H - »I) e 0 + 2: (A, = A) e 0 u
= k k Y k k k
=] =]
T.e.,
n (10)
by u; = Y e 00y - My (27)
k=1

since (xk, uk) are eigen pairs of H. But the v, are a linearly

independent set. Hence
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(io)
e, (Ai - ) = bl
0 0 0
(28)
(i) _ .
eko —0,k=|=10.
Thus (26) and (25) now give respectively
bi u,
(H - >\I)"1 b. u, = 00
1, 1 A, =2
070 1,
andJr
n biui
Y1=ZA—A (29)
N i
i=1

Hence if ) is an approximation to a simple eigenvalue ., X, may
be taken tc be the normalized vector J

k=1
where

Bj(l) =1 (normalization)

b, || rs=2]

1y, _ 1% |

|Bk | = Tj‘:jT%ng kK F 3.

k J

.1.

It was pointed out by Professor J. S. Vandergraft that
equation (29) can be obtained more easily using the fact that

(H&XI)-lui = A];A u, . But this approach is followed because
i
equations of type (23) - (26) appear necessary for the defective

case.
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If one writes

(H - ATI) Yiep = X0 X

i = normalized Yispr i=0, 1, 2, ...

i+l

then (24) represents the first step in this iteration. 1In general,
therefore, if the new vectors are normalized before being fed into

the right side of (30), the coefficients in
= Z (s)
X = B YUy (31)

will satisfy the relation

(s)

Bj = 1 (normalization)
; (32)
. (S) }i{_ A—A[S .
k bj S PE c k3.

It is clear from (32) that if Aj is a "well-separated"

simple eigenvalue, then for k # j

Bk(s) +~ 0 as s » =
rather rapidly, provided bj $ 0.

This in turn implies (from (31)) that X, > uj, the
eigenvector for Aj.
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Now suppose that Aj is a repeated root. For definiteness
say that Al = Xy > A3 2 ... 2 An. I.e., let the largest eigenvalue

A, be of multiplicity two.

1
If ) is now an approximation to Ape then (31) may be
written
n
(s) (s) Z (s)
' =
xg Bl uy + 82 u, + Bk uy (33)
k=3
and if one normalizes as before, namely,
(s) _
Bl =1
then similar to equations (32),
s
b Aq—A
(s) k 1
k bl Xk A
Consequently, for k > 3, Bk(s) + 0 as s + », But for k=2,
16,0 = |2
2 bl

(s)

Hence, in general, 8, + B, # 0. Therefore, with this

normalization, (33) implies that

x' > u, + B8 (35)
S

17 Fat2

Thus xé tends to a vector in the eigenspace of Ayi i.e., the
vector space spanned by all the eigenvectors of Al. Since every
vector in this eigenspace is an eigenvector for Aye one in fact
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has, in this limiting vector (35), an eigenvector for Aye This
argument clearly can be extended to any eigenvalue of finite
multiplicity.

Now look at the case when H is defective. Use the
following result from linear algebra.

Theorem 1. (Primary decomposition)

Let Cir Cor ey C, be the r distinct eigenvalues of H
and the minimum polynomial of H be

S S S
m(x) = (x~c1) l(x-cz) 2 (x—cr) r .

Then

a. the n-dimensional space V over the complex field has
direct sum

and
b. each Wi is invariant under H where

]

W, = nullspace of (H-c;I) t

r i=l’2’..l,r.

A proof of this theorem may be found, e.g., in Hoffman and Kgnzg [6].
It is clear that every eigenvector v for the eigenvalue c, is in

W.. 1In fact the dimension of wo is the same as the multiplicity
of the eigenvalue c;. If all the s; are one, then H is diagonali-

zable and therefore H is not defective. Hence take at least one
s; > 1. The special case of diagonalizable matrices was considered

separately because the proof was simple. The next several paragraphs
are about defective systems.
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A detailed proof of the convergence of the iterative
scheme for defective systems is given in the Appendix. Only a
specific example is considered here which brings out all the
essential features of the proof. The 4 x 4 matrix E given
in (5) is selected.

| 1 0 1 -2

The eigenvalues of this matrix were shown to be -1, -1, -1 and -2.
For this matrix, the minimum polynomial m(x) is the same as the
characteristic polynomial p(x):

p(x) = m(x) = (x+1)3(x+2)

T W e

P
o o0 0 o0
) = |1 0 1 1
1 o0 o0 o0
L1 o 1 -1

Solving (E+I)x = 0 yields x° = {0, 1, 0, 0} as the
only independent eigenvector for the eigenvalue -1. The eigen-
vector for the eigenvalue -2 is {0, -1, 0, 1} .

r0 0 0 0
(E+I)3 - 0 -1
0 0 0
_0 0 1 —lJ
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and the vectors

0
0

o o O ¢

- 24 -

q
C 0

0
1/v2

_1//2J

are a basis for the nullspace of (E+I)3 and, of course, the
eigenvector {0, -1v2, 0, 1//2} is a basis for the nullspace of

(E+2I).

These four vectors (noting they are
are called, respectively, ui, Uy, usg

and u,.

4

approximation to the eigenvalue -1 and let ¢ =

One can repeat equations (23 -

(10) (io)
bi ui 2: (E-)\I)ek u + eel
0 0 2
’io)
The aim is to evaluate ey , k=1,2,3,4; io=1,
Let i0=l, Then
- - p- = -
-1 0 0 0 lT -1
-1 0 1l
Euz = 1 _l 0 = =
L l 1 -2'- bO-J - ld
1 0 o) [ o7 o0 ]
Euy = -1 0 172 = |-1/V2
1 0 1 -2 1/V/2 -1//2
- y [/ g L /72

4

(26) here but

u

not all eigenvectors)
Let A be the computed

-1-1 be the error.
must replace (27) by

l L]

2,3,4.
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C1 0 o 0] o 7 [0 ]
Ru, = 1 -1 1 1 -2 _ |2 = -2u,
-1 0 0 0
1 0 1 -2 1/V2 | ~-v/2 ]

(36) can now be rewritten

bju; = ez(l)(ul—u2+/§ uy) + e3(1)(/5 u)-u,)

e4(l)(-2u4) - A(ez(l)u2 + e

(1) (1)

+ 3 u3+e4

u4) (37)

(1)

+ eel u1

Since the u; are linearly independent, one may equate coefficients:

u,: b, = e (1) + /5é3(1) + ce (1)

1 1 2 1
oL . (L) (L
u,: 0 = e, re,
uz: 0 = —e3(l) + V2 ez(l) - Ae3(l)

u,: 0 = e4(l)(-2-x)

o

(1) 1 (1) _

€

If i0 = 2, then corresponding to (37) one has

0 = ce (2) + e (2) + V2 e3(2)

2

b2 = —ez(z) - Aez(z)
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_ _. (2) (2) _ (2)
0 = -e, + V2 e, re,
0=e,® (-2-1) .
Thus
L@ _ P2 P

2 T = (1+2) €

(2) _

. (2) V2 e, _ V2 b,

3 1+ 2 2

€
b, (2~¢)
el(z) = (_e2(2) - /-2—83(2))/5 = 2 3
[
e4(2) = 0.
Again
b b
e4(3) = 0’ e2(3) - 0, e3(3) = + _Ez , el(3) = (_/'2' T3)/€
and
(4) b
Consequently,
b b. (2-¢) Y2 b (b ) -/Z b b b
_ 1l 2 _ 3 2 2 3 _ 4
Y17\e * 73 82)‘11+ I A T Bt A B B B

(39)

It is clear from (39) that unless b2 and b3 are simultaneously
zero, the vector x; = (53/2b2)y1 is already a good approximation
to uy if ) is a good approximation to Al=-l. It is interesting to
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note that if ) is chosen close to A4=-2, then l-e=1+1+A=2+) so

that €' = 1l-¢ is a small quantity now while ¢ is near unity.
Then (39) implies that (e'/b4)y1 is now a good approximation
to u,.

4

Unlike the case of diagonalizable matrices, in
defective systems further iterations may bring very slow improve-
ment if any in the eigenvector. E.g., in

the eigenvalues are 1, 1 and the unique eigenvector is ul={1,0}.
Taking Xy = {a,b} and e=1-) it is seen that

yields Xy = (ae-b)/ez, Yy < b/e. When normalized one obtains
{ae~b, bel or approximately {1, -e}. If the process is repeated,

€ 1l b4 aes-b

0 € Yo be

leads to the second approximation {1, -¢/2} to the eigenvector
{1, 0}. Thus when ¢ is small (as it will be for good eigenvalue
approximations), the improvement is insignificant even when one
neglects round off errors.

The question now is, given that xl is, say, a double
root, how does one determine if there is another eigenvector of Al?

If there is one, how does one find it? It is known that there is
no simple practical answer to the first question. (In fact, inde-
pendence in itself is a troublesome concept in the numerical sense.)
Several theoretical answers are available none of which is of much
use in practice. Therefore, proceed under the assumption that
there is one more independent vector and try to find it. The
method popularized (by Wilkinson and others) was to perturb the
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approximate eigenvalue X of xl by a small quantity of the order of

2_t, where t is the number of binary digits carried by the computer
used, and go through the calculation again [4]. An alternative
procedure suggested by Ortega [5] is used, where one generates a
new initial wvector xé in (24). This approach is appealing because

this leaves the matrix in (24) unaltered, as opposed to Wilkinson's
method, resulting at least in less programming effort and possibly
some saving in computer time. The vector xb is produced from a

random number generator subroutine. The probability that the
second initial vector is identical to the first initial vector is
near zero and therefore the probability is very high that the
second eigenvector is independent of the first. This is easily
seen from the fact that the eigenspace of Al is now a plane and

2 to be
acceptable is that it be in the plane and separated from uy by an

after accepting u, as the first vector all one needs for u

angle of at least a few degrees. E.g., if 4° separation is suffi-
cient for accuracy in the later orthonormalizing process, the
probability is over .95. Of course, if A, does not have a second

1
independent eigenvector (matrix is nondiagonalizable) then every
choice of X, will lead to the same eigenvector. In case a second

attempt leads to the same eigenvector, how does one decide whether
this is a failure or this is due to the fact that there are no

other independent vectors? It was decided that the reasonable thing
to do is to repeat the process with new random vectors a "sufficient"
number of times to be "reasonably certain". This number in our
program is a parameter and depending on how conservative/optimistic
the user is the value could be high/low. It is now clear that the
above approach applies just as well to higher multiplicities.

The question of how one determines independence of two
(or more vectors is yet to be settled. Once again the theoretical
definition of independence is discarded as unsatisfactory. Instead,
as soon as a vector is obtained one tests to see if it is a candi-
date towards producing an orthonormal set of eigenvectors kecause
one may not know, a priori, the dimension of this eigenspace and
again one cannot say how many linearly independent eigenvectors can

be extracted. Using the Gram—-Schmidt process3 one simultaneously
orthonormalizes and tests for independence.

3See below.
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Recall the earlier comments that process (30) is used

with a random initial vector X to obtain an eigenvector uy which

is normalized to unit length (i.e., ||:]||=1). Process (30) is
repeated with a new random vector for X, and orthonormalization

is done using Gram-Schmidt process to obtain u,. Even though it

is perhaps known to most readers it is necessary to introduce
briefly the Gram-Schmidt process to explain when and why it may
fail. In the notation used in the next paragraph, the symbols
have meaning independent of what they may stand for elsewhere.

Let A7 Qoyp eeey O be a linearly independent set of

vectors and let
Bl = al/llalll

Ll2 = 2 - (azr Bl) Bll 82 = U2/I |u2I|

and in general (i.e., for k=2, 3, ..., n)

k-1

Uk=ak- Z (ak’ Bj) le Bk= uk/llukll

i=1
Then Bl' 82, ey Bn is an orthonormal set spanning the same
vector space as that of Ayy ewey Op. This is the Gram-Schmidt
process. Look at 82. My is nonzero because ay and Bl are
linearly independent and hence o, + (a,, 8,)8;. But what if

o, is very nearly equal to (az, Bl)Bl? There may be severe
cancellation in the computation of Mo and consequently the 62

may be grossly in error. (This kind of cancellation is even more
disastrous in later stages.) It is now clear that it is of great
advantage, in case severe cancellation is suspected, if one has

the choice of replacing the o, by another vector and recomputing

82, rather than continue with a poorly obtained 82. This is

exactly what is incorporated in the program.
By the above process, then, one comes to a point where

one has either as many orthonormal eigenvectors as the multipli-
city of the eigenvalue at hand or the Gram-Schmidt process fails
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repeatedly to produce any further eigenvectors. The latter case
indicates the probability of nonlinear divisors. In either case
it is concluded that all the eigenvectors have been extracted.

4. The Eigenvectors of A

Having obtained the eigenvectors for an eigenvalue A of
the Hessenberg form the next major step in the program is to obtain

the corresponding eigenvectors for the original matrix A. It is
recalled that

-1

I
el

A P (say)

where each P is (unitary) orthogonal. Then

A(Px) = A(Px) .

Hence if x is an eigenvector of H then Px is the corresponding
eigenvector of A. Since all the information needed to construct
P is saved when computing H from A, Px is readily obtained.

Note further than if Xl’ x2 are two orthonormal

eigenvectors of the same eigenvalue ) of H then

(%7, %5) =0

and
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(le, Px2) = (xl, PTsz)
= (xy, PlT P2T o (Pn—ZTPn-Z) e PyXy
= (X0 %))
=0
Again
(le, le) = (xl, xl) = 1

Thus the eigenvectors obtained by operating with P on the eigen-
vectors of H corresponding to an eigenvalue automatically form
an orthonormal system for A.

5. Examgles

In this section five numerical examples are presented.
The examples are selected on the basis of features such as multi-
plicity, defects or ill-conditioning. The exact eigenvalues are
known. Thus computed eigenvalues give a measure of accuracy of
the Hessenberg form. Also the eigenvectors in most cases can
easily be hand-computed for checking. Notice that in general
errors in the imaginary parts of eigenvalues as well as eigen-
vectors are much larger than the errors in the real parts. This
is our experience with every difficult example.

In the Hessenberg forms of the print out, the nonzero
entries below the subdiagonal are the components of the trans-
formation vectors w (see equation (6)). These are not parts of
the Hessenberg matrices, thus should be ignored.4 - Example 1 is
the matrix E discussed in page 4. Example 2 has exact eigen-
values 1 * 2i, 4, -1. The third example has 1 as root of multi-
plicity four. This root has only three distinct eigenvectors.
The third and fourth computed eigenvectors correspond to the same
exact eigenvector. The errors in the components are of the same
order as the corresponding eigenvalue. #For example, the third

eigenvalue has an 0(10—4) error in its imaginary part and components
of its eigenvector have the same order error. Notice that for the
well separated fifth eigenvalue 2, the error in the eigenvector is

of order 10_19.

4All vectors were obtained after two iterations.
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Example 4 is also a defective matrix and again exhibits
the larger errors in the imaginary parts. Notice that the last
three vectors in this example are almost identical in the signi-
ficant components.

In contrast to the first four examples, the last one
is a matrix with well-separated eigenvalues %1, 2, 3, *6. Aas
expected the results are excellent for this example.
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APPENDIX

Here a proof is indicated for the convergence of the
Wielandt iteration process when applied to defective matrices.
In the text a specific example was considered. Essentially the
same argument would suffice in general. Consequently, manifestly
repetitive steps are avoided.

Let 14 be an eigenvalue of multiplicity S and let the

dimension of the eigenspace of A be si with si < 8y Then take

Uy Uy eeey U, 4 A set of linearly independent eigenvectors of
1

»,, and the additional vectors u_, ; esey U so that together
1 $1+1 Sy
these s vectors form an orthonormal basis for Wl of Theorem 1.

This is done for each of the Wi' Concentrate on the subspace

Wy . (The case when s]'_=sl is easily disposed of.)
With this definition of the u; i=1,2,...;n; one can
again write down equations (23) - (26). Instead of (27) equations

of the following type are obtained:

1
sl n
- _ (1) 2: _ (1)
blul = E: (Ak A) e, u + (H kI)ek u - (Al)
k=1 k=s!+1
1
The aim is to evaluate ek(l), k=1,...,n, i=1,2,...,n. From the

Primary Decomposition Theorem it is known that

1
Hu, = By U, ¢ K=S{*l, ..., s (A2)
=1
and
n
Hu, = Z B, U, « K=s;*l,....n (A3)
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for scalars Brg * Substituting (A2), (A3) in (Al) and using

linear independence of u; one obtains

S

1
_ _ (1) Z (1)
— !
k—sl+l
51
_ _ (1) Z (1) . '
0 = (xi A)ei + Bi i Sk r i=2,..0,85 (A5)
k=sl+1
51
_ (1) _ (1) C
k=si+l
and
n
_ (1) _ (1) L
0 = E: e Bki Aei ’ 1—sl+l,...,n. (A7)
sl+l

If the last four equations are written out as a linear

(1)

system for the unknowns ey
of the form

, k=1,...,n, one obtains a matrix

r “
D By 0
0 32 0 (a8)
0 0 B

e 3.J
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D is an si order diagonal matrix with dii = Xi - A
By is Si X (sl-si) and B2, B, are square matrices.
[~ \ . n
Bt * - [ [ LI B [
sl+l,sl+l sl+2,sl+1 sl,sl+l
B,= |8 \ B ' pom A B ' (a9)
2 si+l,sl+2 sl+2,s1+2 sl,sl+2
B B =X
L Si+l,Sl LEE SR Y Sl’Sl o
and is such that
- -
(1)
csi+l
e(l)
)
B, | %i*? = 0 (A10)
o)
1
- -

Since ) is arbitrary, it may be assumed that B, is nonsingular.
(l)=0 k=s! .
k ! 1 1
él)=0, k=sl+l, «.sy; N. Hence from the first si equations it

Then e +1, ..., s By the same argument one will also

have e

is concluded that

(1)

0
’_l
]

bl/(Al—A)

L) _ o |, x=2,...,n.
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It is now clear that starting from an equation of type

(Al) one finds e (1)

K ’ i=l,2,...,si to be
(1) _ _
e; = bi/()\i A)
e, M) =0, Kii.
For si < i< S, (AB) 1leads to
[ (i) [ ()] 7
D ey 1 Bl € iyl ro
Z + : - ].
(1)
e e 0
L S1 L 51 J L
Noting that D—l is a diagonal matrix with nonzero elements
a*, = (x.—A)_l, one has
ii i
B - [~ 1 ™
(1) (1)
e, iyl
) = -1 ’ _ o1 -1
. = =D Bl . D B1B2
i (1)
Lesi(l)J es1
- -
L
and
~ 9
0
0
. 0
e ) = 5,7 b, |+ k=si+l, ...s).
0
0
- -

oo

O« © U ©

(All)

(aAl12)
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(1)

It still follows that e =0, k=sl+l,...,n.
Finally, for i>sl, one has
i
e, =0, k=1,...,5;
and
(1)] 0]
es +1
1 .
. b.
_ -1 i
. = B, 0 (A13)
e 0
L n - L -l
Thus one may write
(1) _ . -1
e = 0(b; !!33 [y . (Al4)

Without going into details, it is seen how relative separation
between distinct eigenvalues plays an important role in the rate
of convergence (c.f., (38), (39)). 1In fact it is pertinent to
write

™) (A15)

= O(min |A1-Aj
jzsy

With the help of (All) - (Al5) it can now be claimed that
after one step of the iteration process

Hyl = X5

X

o = ¥i/llyell
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x1 has the form

l
- ' -
Xy (b )u + 2: O(bk)(xl A)uk
k=1 =s
u O(b") | r -1
+ E: min{lxl—AfT, j=sl+l,...,n}
k=s +1 ]

. . .
Here bk is a function fk with arguments bl’ b2, ooy bsl. That
. - 2o "o »*
1s,bk fk(bl,...,bsl) and similarly bk fk(bsl+l,...,bn).
Without further ado write in general for s=1,2,3,...
L
°1 51 .
y (s) no(s)
Z + Z b, |xl—x|
k=1 k=si+l
n s
1 n (s) _
+ min {Ixy=2s 13 E: By |>‘l A
j=sy+1,...,n I k=s 41

where the numbers Bk(s) depend only on the components of the initial
vector Xg. Thus convergence is established. Note that if ) is a
good approximation to Ayv then Xy is approximately in the eigenspace
of Ao If Ay is well separated from the other distinct eigenvalues,
X is already a good eigenvector.



